'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  max(L(x)) -> x
     , max(N(L(0()), L(y))) -> y
     , max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
     , max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  max^#(L(x)) -> c_0()
    , max^#(N(L(0()), L(y))) -> c_1()
    , max^#(N(L(s(x)), L(s(y)))) -> c_2(max^#(N(L(x), L(y))))
    , max^#(N(L(x), N(y, z))) -> c_3(max^#(N(L(x), L(max(N(y, z))))))}
  
  The usable rules are:
   {  max(L(x)) -> x
    , max(N(L(0()), L(y))) -> y
    , max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
    , max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))}
  
  The estimated dependency graph contains the following edges:
   {max^#(N(L(s(x)), L(s(y)))) -> c_2(max^#(N(L(x), L(y))))}
     ==> {max^#(N(L(s(x)), L(s(y)))) -> c_2(max^#(N(L(x), L(y))))}
   {max^#(N(L(s(x)), L(s(y)))) -> c_2(max^#(N(L(x), L(y))))}
     ==> {max^#(N(L(0()), L(y))) -> c_1()}
   {max^#(N(L(x), N(y, z))) -> c_3(max^#(N(L(x), L(max(N(y, z))))))}
     ==> {max^#(N(L(s(x)), L(s(y)))) -> c_2(max^#(N(L(x), L(y))))}
   {max^#(N(L(x), N(y, z))) -> c_3(max^#(N(L(x), L(max(N(y, z))))))}
     ==> {max^#(N(L(0()), L(y))) -> c_1()}
  
  We consider the following path(s):
   1) {  max^#(N(L(x), N(y, z))) ->
         c_3(max^#(N(L(x), L(max(N(y, z))))))
       , max^#(N(L(s(x)), L(s(y)))) -> c_2(max^#(N(L(x), L(y))))
       , max^#(N(L(0()), L(y))) -> c_1()}
      
      The usable rules for this path are the following:
      {  max(L(x)) -> x
       , max(N(L(0()), L(y))) -> y
       , max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
       , max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  max(L(x)) -> x
               , max(N(L(0()), L(y))) -> y
               , max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
               , max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))
               , max^#(N(L(s(x)), L(s(y)))) -> c_2(max^#(N(L(x), L(y))))
               , max^#(N(L(x), N(y, z))) -> c_3(max^#(N(L(x), L(max(N(y, z))))))
               , max^#(N(L(0()), L(y))) -> c_1()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  max(L(x)) -> x
             , max(N(L(0()), L(y))) -> y
             , max^#(N(L(0()), L(y))) -> c_1()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  max(L(x)) -> x
               , max(N(L(0()), L(y))) -> y
               , max^#(N(L(0()), L(y))) -> c_1()}
              
              Details:
                 Interpretation Functions:
                  max(x1) = [1] x1 + [1]
                  L(x1) = [1] x1 + [0]
                  N(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  max^#(x1) = [1] x1 + [1]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
             , max^#(N(L(s(x)), L(s(y)))) -> c_2(max^#(N(L(x), L(y))))}
            and weakly orienting the rules
            {  max(L(x)) -> x
             , max(N(L(0()), L(y))) -> y
             , max^#(N(L(0()), L(y))) -> c_1()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
               , max^#(N(L(s(x)), L(s(y)))) -> c_2(max^#(N(L(x), L(y))))}
              
              Details:
                 Interpretation Functions:
                  max(x1) = [1] x1 + [6]
                  L(x1) = [1] x1 + [2]
                  N(x1, x2) = [1] x1 + [1] x2 + [12]
                  0() = [11]
                  s(x1) = [1] x1 + [1]
                  max^#(x1) = [1] x1 + [3]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [1] x1 + [9]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))
                 , max^#(N(L(x), N(y, z))) -> c_3(max^#(N(L(x), L(max(N(y, z))))))}
              Weak Rules:
                {  max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
                 , max^#(N(L(s(x)), L(s(y)))) -> c_2(max^#(N(L(x), L(y))))
                 , max(L(x)) -> x
                 , max(N(L(0()), L(y))) -> y
                 , max^#(N(L(0()), L(y))) -> c_1()}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))
                   , max^#(N(L(x), N(y, z))) -> c_3(max^#(N(L(x), L(max(N(y, z))))))}
                Weak Rules:
                  {  max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
                   , max^#(N(L(s(x)), L(s(y)))) -> c_2(max^#(N(L(x), L(y))))
                   , max(L(x)) -> x
                   , max(N(L(0()), L(y))) -> y
                   , max^#(N(L(0()), L(y))) -> c_1()}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  max_1(4) -> 7
                 , max_1(8) -> 7
                 , max_1(10) -> 9
                 , max_1(12) -> 9
                 , L_0(2) -> 2
                 , L_0(2) -> 7
                 , L_0(2) -> 9
                 , L_1(2) -> 5
                 , L_1(7) -> 6
                 , L_1(9) -> 13
                 , N_0(2, 2) -> 2
                 , N_0(2, 2) -> 7
                 , N_0(2, 2) -> 9
                 , N_1(2, 2) -> 8
                 , N_1(5, 5) -> 10
                 , N_1(5, 6) -> 4
                 , N_1(5, 13) -> 12
                 , 0_0() -> 2
                 , 0_0() -> 7
                 , 0_0() -> 9
                 , s_0(2) -> 2
                 , s_0(2) -> 7
                 , s_0(2) -> 9
                 , s_1(9) -> 7
                 , s_1(9) -> 9
                 , max^#_0(2) -> 1
                 , max^#_1(4) -> 3
                 , max^#_1(10) -> 11
                 , max^#_1(12) -> 11
                 , c_1_0() -> 1
                 , c_1_1() -> 3
                 , c_1_1() -> 11
                 , c_2_0(1) -> 1
                 , c_2_1(11) -> 3
                 , c_2_1(11) -> 11
                 , c_3_1(3) -> 1}
      
   2) {  max^#(N(L(x), N(y, z))) ->
         c_3(max^#(N(L(x), L(max(N(y, z))))))
       , max^#(N(L(s(x)), L(s(y)))) -> c_2(max^#(N(L(x), L(y))))}
      
      The usable rules for this path are the following:
      {  max(L(x)) -> x
       , max(N(L(0()), L(y))) -> y
       , max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
       , max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  max(L(x)) -> x
               , max(N(L(0()), L(y))) -> y
               , max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
               , max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))
               , max^#(N(L(x), N(y, z))) -> c_3(max^#(N(L(x), L(max(N(y, z))))))
               , max^#(N(L(s(x)), L(s(y)))) -> c_2(max^#(N(L(x), L(y))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  max(L(x)) -> x
             , max(N(L(0()), L(y))) -> y}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  max(L(x)) -> x
               , max(N(L(0()), L(y))) -> y}
              
              Details:
                 Interpretation Functions:
                  max(x1) = [1] x1 + [1]
                  L(x1) = [1] x1 + [0]
                  N(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  max^#(x1) = [1] x1 + [1]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [1] x1 + [3]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
             , max^#(N(L(s(x)), L(s(y)))) -> c_2(max^#(N(L(x), L(y))))}
            and weakly orienting the rules
            {  max(L(x)) -> x
             , max(N(L(0()), L(y))) -> y}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
               , max^#(N(L(s(x)), L(s(y)))) -> c_2(max^#(N(L(x), L(y))))}
              
              Details:
                 Interpretation Functions:
                  max(x1) = [1] x1 + [0]
                  L(x1) = [1] x1 + [0]
                  N(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [1]
                  s(x1) = [1] x1 + [2]
                  max^#(x1) = [1] x1 + [12]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [1] x1 + [11]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))
                 , max^#(N(L(x), N(y, z))) -> c_3(max^#(N(L(x), L(max(N(y, z))))))}
              Weak Rules:
                {  max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
                 , max^#(N(L(s(x)), L(s(y)))) -> c_2(max^#(N(L(x), L(y))))
                 , max(L(x)) -> x
                 , max(N(L(0()), L(y))) -> y}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))
                   , max^#(N(L(x), N(y, z))) -> c_3(max^#(N(L(x), L(max(N(y, z))))))}
                Weak Rules:
                  {  max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
                   , max^#(N(L(s(x)), L(s(y)))) -> c_2(max^#(N(L(x), L(y))))
                   , max(L(x)) -> x
                   , max(N(L(0()), L(y))) -> y}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  max_1(4) -> 7
                 , max_1(8) -> 7
                 , max_1(10) -> 9
                 , max_1(12) -> 9
                 , L_0(2) -> 2
                 , L_0(2) -> 7
                 , L_0(2) -> 9
                 , L_1(2) -> 5
                 , L_1(7) -> 6
                 , L_1(9) -> 13
                 , N_0(2, 2) -> 2
                 , N_0(2, 2) -> 7
                 , N_0(2, 2) -> 9
                 , N_1(2, 2) -> 8
                 , N_1(5, 5) -> 10
                 , N_1(5, 6) -> 4
                 , N_1(5, 13) -> 12
                 , 0_0() -> 2
                 , 0_0() -> 7
                 , 0_0() -> 9
                 , s_0(2) -> 2
                 , s_0(2) -> 7
                 , s_0(2) -> 9
                 , s_1(9) -> 7
                 , s_1(9) -> 9
                 , max^#_0(2) -> 1
                 , max^#_1(4) -> 3
                 , max^#_1(10) -> 11
                 , max^#_1(12) -> 11
                 , c_2_0(1) -> 1
                 , c_2_1(11) -> 3
                 , c_2_1(11) -> 11
                 , c_3_1(3) -> 1}
      
   3) {  max^#(N(L(x), N(y, z))) ->
         c_3(max^#(N(L(x), L(max(N(y, z))))))
       , max^#(N(L(0()), L(y))) -> c_1()}
      
      The usable rules for this path are the following:
      {  max(L(x)) -> x
       , max(N(L(0()), L(y))) -> y
       , max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
       , max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  max(L(x)) -> x
               , max(N(L(0()), L(y))) -> y
               , max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
               , max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))
               , max^#(N(L(x), N(y, z))) -> c_3(max^#(N(L(x), L(max(N(y, z))))))
               , max^#(N(L(0()), L(y))) -> c_1()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  max(L(x)) -> x
             , max(N(L(0()), L(y))) -> y
             , max^#(N(L(0()), L(y))) -> c_1()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  max(L(x)) -> x
               , max(N(L(0()), L(y))) -> y
               , max^#(N(L(0()), L(y))) -> c_1()}
              
              Details:
                 Interpretation Functions:
                  max(x1) = [1] x1 + [1]
                  L(x1) = [1] x1 + [0]
                  N(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  max^#(x1) = [1] x1 + [1]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))}
            and weakly orienting the rules
            {  max(L(x)) -> x
             , max(N(L(0()), L(y))) -> y
             , max^#(N(L(0()), L(y))) -> c_1()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))}
              
              Details:
                 Interpretation Functions:
                  max(x1) = [1] x1 + [1]
                  L(x1) = [1] x1 + [0]
                  N(x1, x2) = [1] x1 + [1] x2 + [1]
                  0() = [1]
                  s(x1) = [1] x1 + [3]
                  max^#(x1) = [1] x1 + [2]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))
                 , max^#(N(L(x), N(y, z))) -> c_3(max^#(N(L(x), L(max(N(y, z))))))}
              Weak Rules:
                {  max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
                 , max(L(x)) -> x
                 , max(N(L(0()), L(y))) -> y
                 , max^#(N(L(0()), L(y))) -> c_1()}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))
                   , max^#(N(L(x), N(y, z))) -> c_3(max^#(N(L(x), L(max(N(y, z))))))}
                Weak Rules:
                  {  max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
                   , max(L(x)) -> x
                   , max(N(L(0()), L(y))) -> y
                   , max^#(N(L(0()), L(y))) -> c_1()}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  max_1(4) -> 7
                 , max_1(8) -> 7
                 , max_1(10) -> 9
                 , L_0(2) -> 2
                 , L_0(2) -> 7
                 , L_0(2) -> 9
                 , L_1(2) -> 5
                 , L_1(7) -> 6
                 , L_1(9) -> 5
                 , N_0(2, 2) -> 2
                 , N_0(2, 2) -> 7
                 , N_0(2, 2) -> 9
                 , N_1(2, 2) -> 8
                 , N_1(5, 5) -> 10
                 , N_1(5, 6) -> 4
                 , 0_0() -> 2
                 , 0_0() -> 7
                 , 0_0() -> 9
                 , s_0(2) -> 2
                 , s_0(2) -> 7
                 , s_0(2) -> 9
                 , s_1(9) -> 7
                 , s_1(9) -> 9
                 , max^#_0(2) -> 1
                 , max^#_1(4) -> 3
                 , c_1_0() -> 1
                 , c_1_1() -> 3
                 , c_3_1(3) -> 1}
      
   4) {max^#(N(L(x), N(y, z))) ->
       c_3(max^#(N(L(x), L(max(N(y, z))))))}
      
      The usable rules for this path are the following:
      {  max(L(x)) -> x
       , max(N(L(0()), L(y))) -> y
       , max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
       , max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  max(L(x)) -> x
               , max(N(L(0()), L(y))) -> y
               , max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
               , max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))
               , max^#(N(L(x), N(y, z))) -> c_3(max^#(N(L(x), L(max(N(y, z))))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  max(L(x)) -> x
             , max(N(L(0()), L(y))) -> y}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  max(L(x)) -> x
               , max(N(L(0()), L(y))) -> y}
              
              Details:
                 Interpretation Functions:
                  max(x1) = [1] x1 + [1]
                  L(x1) = [1] x1 + [0]
                  N(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  s(x1) = [1] x1 + [0]
                  max^#(x1) = [1] x1 + [1]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))}
            and weakly orienting the rules
            {  max(L(x)) -> x
             , max(N(L(0()), L(y))) -> y}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))}
              
              Details:
                 Interpretation Functions:
                  max(x1) = [1] x1 + [0]
                  L(x1) = [1] x1 + [0]
                  N(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [11]
                  s(x1) = [1] x1 + [6]
                  max^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))
                 , max^#(N(L(x), N(y, z))) -> c_3(max^#(N(L(x), L(max(N(y, z))))))}
              Weak Rules:
                {  max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
                 , max(L(x)) -> x
                 , max(N(L(0()), L(y))) -> y}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))
                   , max^#(N(L(x), N(y, z))) -> c_3(max^#(N(L(x), L(max(N(y, z))))))}
                Weak Rules:
                  {  max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
                   , max(L(x)) -> x
                   , max(N(L(0()), L(y))) -> y}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  max_1(4) -> 7
                 , max_1(8) -> 7
                 , max_1(10) -> 9
                 , L_0(2) -> 2
                 , L_0(2) -> 7
                 , L_0(2) -> 9
                 , L_1(2) -> 5
                 , L_1(7) -> 6
                 , L_1(9) -> 5
                 , N_0(2, 2) -> 2
                 , N_0(2, 2) -> 7
                 , N_0(2, 2) -> 9
                 , N_1(2, 2) -> 8
                 , N_1(5, 5) -> 10
                 , N_1(5, 6) -> 4
                 , 0_0() -> 2
                 , 0_0() -> 7
                 , 0_0() -> 9
                 , s_0(2) -> 2
                 , s_0(2) -> 7
                 , s_0(2) -> 9
                 , s_1(9) -> 7
                 , s_1(9) -> 9
                 , max^#_0(2) -> 1
                 , max^#_1(4) -> 3
                 , c_3_1(3) -> 1}
      
   5) {max^#(L(x)) -> c_0()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           max(x1) = [0] x1 + [0]
           L(x1) = [0] x1 + [0]
           N(x1, x2) = [0] x1 + [0] x2 + [0]
           0() = [0]
           s(x1) = [0] x1 + [0]
           max^#(x1) = [0] x1 + [0]
           c_0() = [0]
           c_1() = [0]
           c_2(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {max^#(L(x)) -> c_0()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {max^#(L(x)) -> c_0()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {max^#(L(x)) -> c_0()}
              
              Details:
                 Interpretation Functions:
                  max(x1) = [0] x1 + [0]
                  L(x1) = [1] x1 + [0]
                  N(x1, x2) = [0] x1 + [0] x2 + [0]
                  0() = [0]
                  s(x1) = [0] x1 + [0]
                  max^#(x1) = [1] x1 + [1]
                  c_0() = [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {max^#(L(x)) -> c_0()}
            
            Details:         
              The given problem does not contain any strict rules